Automating the Implementation of Kalman Filter
Algorithms

JON WHITTLE!

QSS Group/NASA Ames Research Center
jonathw@email.arc.nasa.gov

and

JOHANN SCHUMANN

RIACS/NASA Ames Research Center
schumann@email.arc.nasa.gov

AUTOFILTER is a tool that generates implementations that solve state estimation problems using
Kalman filters. From a high-level, mathematics-based description of a state estimation problem,
AUTOFILTER automatically generates code that computes a statistically optimal estimate using
one or more of a number of well-known variants of the Kalman filter algorithm. The problem
description may be given in terms of continuous or discrete, linear or nonlinear process and
measurement dynamics. From this description, AUTOFILTER automates many common solution
methods (e.g., linearization, discretization) and generates C or Matlab code fully automatically.
AUTOFILTER surpasses toolkit-based programming approaches for Kalman filters because it requires
no low-level programming skills (e.g., to “glue” together library function calls). AUTOFILTER raises
the level of discourse to the mathematics of the problem at hand rather than the details of what
algorithms, data structures, optimizations etc. are required to implement it. An overview of
AUTOFILTER is given along with an example of its practical application to deep space attitude
estimation.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.3 [Software Engineering]: Coding Tools and Techniques; D.2.3 [Software Engineering)|:
Reusable Software; G.4 [Mathematical Software]: Algorithm Design and Analysis

Additional Key Words and Phrases: Code generation, Kalman Filters, State Estimation, Auto-
matic Programming

1. INTRODUCTION

Once the mathematical models for a state estimation problem have been formulated,
there is usually a significant amount of implementation work that has to be done
before those models and their associated estimator can be tested. This is true even if
existing libraries/toolkits are used to support implementation because such libraries
still require “glue” code to be written to allow the library functions to work together.
Testing usually suggests refinements to the models and/or the estimator that in turn
results in additional coding effort. The goal of the AUTOFILTER project is to develop
techniques and tools that substantially reduce the time and effort needed to develop
reliable implementations of state estimators. AUTOFILTER is a knowledge-based
tool that, given a high-level mathematical description of the process dynamics and

L All correspondence should be addressed to the first author at NASA Ames Research Center, MS
269-2, Moffett Field, CA 94035

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003, Pages 1-077.

measurements, can automatically generate a C or Matlab implementation that will
compute a statistically optimal estimate of a specified state vector under the model
assumptions. In particular, AUTOFILTER generates Kalman filter implementations
and has so far been used on a number of applications and case studies concerning
spacecraft attitude estimation and control. AUTOFILTER surpasses existing coding
techniques (including the use of toolkits) for this class of problems because:

—analysts using AUTOFILTER need not be concerned with low-level implementation
details;

—analysts need not be concerned with some problem solving methods (e.g., lin-
earization) because AUTOFILTER carries them out automatically;

——changes in the model require no additional coding because AUTOFILTER just re-
generates code for the updated model.

Problem description

AUTOFILTER

\/

Kaman filter implementation

C code Matlab code

Fig. 1. An overview of AUTOFILTER.

A Kalman filter [Brown and Hwang 1997] is a recursive algorithm for calculating
the best estimate of a state vector, x, based on noisy measurements, z. The
state vector contains variables of interest that will be estimated, e.g., position and
velocity. The Kalman filter estimate of this state vector incorporates knowledge
given as a model of the process under analysis and a model of the relationship
between the state vector and the measurements. AUTOFILTER generates Kalman
filter implementations from a description of these models and a description of x and
z. Figure 1 gives an overview of the AUTOFILTER tool. The problem description
defines the physical characteristics of the problem in terms of the process model
and measurement model. The process model can be defined in the usual way as a
differential equation of the form

%w(t) = f(z(t),1) + g(x(t), hw(t) (1)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

where f,g are functions, x(t) is the state vector, and w(t) is the Gaussian white
process noise, with mean and covariance defined by

Elw(t)] =0 (2)

Elw(t)w” (t')] = Q(t)é(t — t') (3)

where §(t) is the Dirac delta function.
Assuming measurements arrive at discrete timepoints, the measurement equation
at time t; can be defined in the usual way

zi = h(zy) + vy (4)

where vy is the measurement noise, a discrete Gaussian white noise process with
mean and covariance given by

Elvg] =0 (5)

E[vkv%:] = Rkékkl (6)

where dy is the Kronecker delta.

In addition, the problem description contains further information needed for the
filter such as initial process covariance and initial state estimates. Based on this
problem description, AUTOFILTER chooses an appropriate Kalman filter (currently,
the choice is between a standard filter, a linearized filter, an extended Kalman filter
or a parallel bank of filters) and instantiates a generic representation of that filter.
This instantiation may involve significant problem solving such as transformation
from a continuous to a discrete problem formulation or linearization of a model.
The resulting filter implementation can be generated by AUTOFILTER in an inter-
mediate language which is readily translated into any sensible language (currently
C, C++, and Modula II) for various target systems (e.g., Matlab or Octave). The
process of generating the code is generally faster than compilation of the generated
code and the code can be inserted easily into a test environment for immediate
simulation/testing.

AUTOFILTER has a number of advantages, namely:

—Coding effort is significantly reduced. In order to generate a Kalman filter im-
plementation, the user need only formulate the usual state and measurement
equations. An implementation can then be generated fully automatically. This
is in contrast to the use of toolkits where coding is still required to combine
toolkit functions. implementation to the user’s particular needs.

—Rapid prototyping becomes easy. Iterations on the models can be made quickly
and easily. Based on simulation or testing, the user can modify the problem
description and re-generate a new implementation which in turn can then be
simulated /tested.

—The design space can be explored quickly and thoroughly. The rapid prototyping
benefits mean that the analyst has more time to fully explore design alternatives
and variations. Each variation can be generated easily once the models have been
formulated.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

—The generated code is highly documented. The generated code is well documented
with the exact steps that were taken to derive the implementation and the sim-
plifying assumptions that were made. Such documentation is useful for code
reviews or communication between analysts and programmers.

—The code can be made to adhere to existing code standards or architectures. AUT-
OFILTER can be customized to generate code adhering to certain standards. An
architecture description can be given that is then used to structure the gener-
ated code to fit into that architecture. The use of AUTOFILTER encourages reuse
between projects because an enterprise’s style can be fixed in advance.

The remainder of the paper is structured as follows. Section 2 gives an overview
of the design and architecture of the AUTOFILTER tool. Section 3 presents an
application of AUTOFILTER to a deep space attitude estimation problem. Section 4
discusses related work and Section 5 concludes.

2. DESCRIPTION OF AUTOFILTER

Input language
State Measurement|| Noise Filter
Equation Equation Properties || Architecture

Code generation

AlgorithmSChemas/‘yﬁ/,Q\
JCJC I

Symbolic Solvers

[T [T

(
C] Support Modules C]
— () sup te ——

v

Generated artifacts
{ Pseudocode }
C code Matlab code

Fig. 2. AUTOFILTER architecture.

Figure 2 gives an overview of the various components that make up AUTOFILTER.
In this section, we will describe these elements in detail.
2.1 Input Language

The input language of AUTOFILTER allows the concise specification of the process
model, the measurement model, and other important design information. In order

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

to illustrate the basics of AUTOFILTER’s input language, let us consider the follow-
ing simple example of a state estimation problem for a simple rover, taken from
[Roumeliotis et al. 1998]. The rover under consideration is a Pioneer AT rover with
four wheels. The pair of wheels on the left side of the rover are mechanically cou-
pled. Similarly, on the right side. Each side has a rotation encoding sensor which
returns the current speed of the wheels on that side of the vehicle. Furthermore,
there is a gyro which can be used to measure the yaw rate. In this example, we
use a very simple process and measurement model which has three state variables
x = (vE, v)T for the speed estimate of the left wheels, the right wheels, and
the estimate of the yaw rate of the chassis, respectively. A straightforward discrete
process model describing the dynamics of the rover can be defined as follows:

L L
U%H v,}62 w1
Vg1 = . vy, n + wWa
Yk+1 —vi [+ v/l w3

with Gaussian white noise w;, where [is the vehicle axis length. The sensors
measure the state variables directly, so the measurement model is trivial and is given
by z = & + v. Figure 3 gives the AUTOFILTER input specification for this problem.
In addition to defining the process and measurement models, the specification also
defines variables, constants, data and estimator characteristics as described below.

The input language to AUTOFILTER allows the declaration of constants (using
keyword const), input data (keyword data) and datatypes (nat for natural num-
ber, double etc.). Inline comments can be added using the as keyword. Vectors
and matrices can be defined using ellipsis — e.g., the declaration double x(1..3)
declares a 3-vector x whose elements are of type double. Distributions are declared
using the ~ symbol. Index variables can be used to refer to all elements of a vec-
tor or matrix — for example, w(I) ~ gauss(0,1) declares all elements of w to be
Gaussian distributed with zero mean and unit variance. Assignment is defined us-
ing the := operator. The keyword equation _set defines a named set of equations
delimited by is and end. The output is defined to be the estimate from a Kalman
filter where this filter is defined by the keyword estimator.

The process equation for our example (Figure 3) is defined in lines 25-28 and
the measurement equation is given in lines 36-39. The process model is given in
discrete form (the notation _k is used to denote “at time k”). The initial estimate
is given in lines 19-22. Lines 41-48 describe the Kalman filter that AUTOFILTER
should generate. In particular, it is stated how many iterations of the filter should
be executed, the time interval between iterations, and references to the process and
measurement equations and initial conditions are given. Note that this specification
defines a batch-mode processing of measurements (i.e., it assumes all observations
for all time-steps are available on start-up). This is specified by defining an ob-
servation data matrix, z, in line 32 that contains all observations. The underscore
in lines 37-39 denotes the fact the equations are independent of the second index
of z. Online processing of measurements is also supported. The example specifies
only one estimator. However, AUTOFILTER allows the specification of multiple es-
timators and the connections between them, e.g., the definition of a parallel bank
of Kalman filters.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

T/ skokokskokokokokook ok o koK ok ok ok o KoK oK o o 3 oK K KK 3K o o o o 3 K 3K oK oK o o o K K 3K K 3K o o o o K KK 3K oK o o o K K 3K K 3K ok o ok K
2 * The Rover is the Pioneer AT which has four wheels (two on left, two
3 * on right). The wheels on the same side are mechanically

4 * coupled. There are two encoder sensors (one on each side) that

5 * return an estimate of the speeds of the wheel pairs. There is also a
6 * gyro that can be used to measure the yaw rate.

7 *

8 * This model uses 3 state variables:

9 * x(1) : speed estimate of the left wheels

10 * x(2) : speed estimate of the right wheels

11 * x(3) : yaw rate estimate of the chassis

L2 skokokokokokokokok ok ok ok ok ok ok ook ok ok K ok ok ok o ok ok ok o K oK o oK K o o K ok o o K o o K ok o o K K ok ok ok o K sk ok ok ok o ok Kok ok ok ok /
13 const nat n_statevars := 3 as ’Number of state variables’

14 double x(1..n_statevars) as ’state vector’

15 double w(l..n_statevars) as ’process noise vector’

16 double sigma(l..n_statevars) as ’variance of process noise’

17 w(I) " gauss(0, sigma(I))

18

19 double xinit(l..n_statevars) as ’initial state variable values’

20 data double xinit_noise(l..n_statevars) as ’initial state variance’
21 data double xinit_mean(l..n_statevars) as ’initial state mean’

22 xinit(I) ~ gauss(xinit_mean(I), xinit_noise(I))

23

24 const double 1 := 1 as ’vehicle axle length’

25 equation_set nominal_model is

26 x(1) _k+1 := x(1)_k + w(1)

27 x(2) _k+1 := x(2)_k + w(2)

28 x(3) _k+1 := -x(1)_k/1 + x(2)_k/1 + w(3) end

29

30 const nat m_measvars := 3 as ’Number of sensor measurements’

31 const n_steps := 50 as ’Number of filter iterationms’

32 data double z(l..m_measvars, 1..n_steps) as ’measurement data’

33 double v(1..m_measvars) as ’measurement noise vector’

34 data double rho(l..m_measvars) as ’variance of measurement noise’
35 v(I) - gauss(0,rho(I))

36 equation_set measurement_model is

37 z(1,) := x(1) + v(1)

38 z(2,.) = x(2) + v(2)

39 z(3,.) := x(3) + v(3) end

40

41 estimator nominal_filter

42 nominal_filter.update_interval := 1

43 nominal_filter.steps := n_steps

44 nominal_filter.process_eqs := nominal_model

45 nominal_filter.measurement_eqs := measurement_model

46 nominal_filter.initials := xinit(I)

47 /* mdiag(y) is the diagonal matrix with y along the diagonal */

48 nominal_filter.initial_covariance := mdiag(xinit_noise(I))

49

50 output nominal_filter

Fig. 3. Rover Navigation Specification.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

2.2 Code Generation

The AUTOFILTER code generator is built on three levels. These levels correspond to
three stages in solving a particular estimation problem. First, a particular algorithm
(or combination of algorithms) that will solve the problem must be chosen. This
is done at the schema-level. For example, AUTOFILTER may decide on an extended
Kalman filter. The result is a high-level representation of the algorithms chosen.

Many state estimation algorithms involve an element of mathematical solving.
This is done at the solver-level. For example, an extended Kalman filter requires
a linear approximation to a nonlinear process to be derived. Finally, the support-
level takes care of low-level code generation tasks that have not been taken care of
elsewhere. These three levels are described in more detail below.

2.2.1 Algorithm Schemas. A schema is a generic representation of a well-known
algorithm. Most generally, it is a high-level description of a program which captures
the essential algorithmic steps but does not necessarily carry out the computations
for each step. In AUTOFILTER, a schema has five parts:

—underlying assumptions of the algorithm;
—applicability conditions that must hold for the schema to be applied;

—a high-level description of the program in the form of a template that describes
the key algorithmic steps;

—the body of the schema which instantiates the template by calling routines at the
schema-level, solver-level or support-level;

—a blackboard for storing intermediate results which may be needed by other
schemas.

Assumptions are inherent limitations of the algorithm and appear as comments or
run-time assertions in the generated code. Applicability conditions are precondi-
tions that can be used to choose between alternative schemas. The key difference
between assumptions and applicability conditions is that applicability conditions
can be evaluated to see if they are true or false. Assumptions, on the other hand,
are considered to be true but cannot be shown to be true given the body of knowl-
edge in the specification. For example, an assumption for the standard Kalman
filter schema is that the process noise is white. This fact cannot be validated from
the specification but is a necessary requirement for the use of a Kalman filter. An
applicability condition for the standard Kalman filter would be that the process and
measurement models are linear. The analogous condition for the extended Kalman
filter would be that either the process or measurement model is nonlinear. The lin-
earity condition can be explicitly checked on the specification. Note that in many
applications, assumptions will in fact be violated - e.g., the noise may be almost
white. This is a consequence of the fact that the modeling process is approximate.
Applicability conditions for the chosen schema, however, are never violated in an
application.

Even in the presence of applicability conditions, it is possible that different
schemas can apply to the same problem (e.g., a linearized Kalman filter and ex-
tended Kalman filter can both be applicable to the same problem). This leads to
choice points. During code generation, these choices are explored in a depth-first

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

manner. Whenever a dead-end is encountered (i.e., an incomplete code fragment
has been generated but no schema is applicable), AUTOFILTER backtracks. This
control regime allows AUTOFILTER to generate multiple program variants for the
same problem.

The algorithm template is described using a simple template programming lan-
guage that has the usual programming constructs such as if-statements, for and
while loops, and a series construct that specifies the execution of a number of
statements sequentially. The template may also contain variables, denoted with
a prefix $. When the schema is executed during synthesis, these variables get in-
stantiated by code fragments. The blackboard is included as a convenience because
some schemas compute intermediate results that are used by other schemas. Storing
these on the blackboard avoids re-computation.

Figure 4 shows an abstraction of the schema for an extended Kalman Filter.
The calls in the body are parameterized over the schema variables so that the
variables can be instantiated during the body calls. Note how the body describes
the essential sequential steps of the algorithm and the template defines what the
resulting generated code will look like.

The schema template sets up the code structure at a high level with variables
that will be instantiated by the schema body. $Local will be instantiated to a
series of local variable declarations needed by the extended Kalman filter (e.g.,
the declaration of the state transition matrix variable). $Initial will be in-
stantiated to a series of initializations of these variables. The main filter loop
comes next. The code in $UpdateMeasurements will get the next set of obser-
vations from the input stream. The state transition matrix and measurement
matrix will have been initialized in $Initial. In $UpdateStateTransition and
$UpdateMeasurementMatrix, any elements in these matrices that have changed
since the last iteration are re-assigned. Note that AUTOFILTER only re-assigns ele-
ments that vary over time. Hence, in the case of a constant state transition matrix,
there is no additional overhead in assignment. $CalculateGain, $UpdateEstimate,
$UpdateCovariance, $PropagateEstimate, and $PropagateCovariance are the
main parts of the Kalman Filter. For example, in a standard Kalman filter,
$CalculateGain would implement the matrix equation Ky = P~ H,?(H Py Hg +
Rk)_l. Note that these variables can be instantiated in a number of different
ways depending on the type of filter that is being implemented. For example,
in an information filter? the gain expression would instead be calculated using
K = PkaTR,;l. In fact, any of the “slots” in the schema template may be in-
stantiated in different ways by any of the function calls in the schema body. This
highlights the fact that each schema corresponds not to a single algorithm but to
a family of related algorithms. The particular choice of algorithm results from the
characteristics of the problem at hand. The final slot in the template, $StoreQutput
outputs the result of the estimator. By default, only the state estimate is retained
and this is written to an output matrix, although this slot could easily be changed

2 An information filter is a Kalman filter variant often used in the case where very little is known
about the process initially. In such cases, the standard formulation of the Kalman filter results
in a division oo/co. The information filter avoids this by algebraically reformulating the Kalman
filter equations.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

to, for example, write the process covariance at each iteration to standard output.

The advantage of using schemas to encode algorithmic knowledge rather than
parameterized functions is that schemas encode a family of algorithms rather than a
single algorithm. This allows a class of algorithms with significant variations within
that class to be represented by a single schema. In the case of Kalman filters, for
example, the basic filter, linearized and extended filter can all be represented by
the same schema.

2.2.2 Symbolic Solvers. The solver-level of AUTOFILTER consists of a collection
of symbolic solvers, written as a set of conditional rewrite rules. A conditional
rewrite rule C = L = R can be applied to an expression E with subexpression L’
if there is a substitution ¢ for the variables in L such that ¢(L) = L' and if ¢(C) is
true. In this case, L' is replaced by ¢(R) to yield a new expression E'. By defining
a set of such rewrite rules, common problem solving tasks can be accomplished by
exhaustively applying rewrite rules to a given expression. We assume that for each
set of rewrite rules, the order of application of the rules is irrelevant3.

Some examples of rewrite rule systems used in AUTOFILTER are rules for differ-
entiating an expression, for matrix identities, for linearizing a set of equations (e.g.,
by calculating Jacobians), for carrying out various approximations, for evaluating
trigonometric expressions, etc. Rewrite rules are a good way of expressing certain
kinds of domain knowledge because complex solvers can quickly and legibly be
expressed as rewrites.

AUTOFILTER has a sophisticated rewrite rule engine for applying rewrite rules
that can, for example, apply rules under different assumptions. This rewrite engine
was written by Bernd Fischer and is inherited from the AUTOBAYES data analysis
code generation system [Fischer et al. 2000].

As a simple example of a rewrite rule, consider the task of approximating a matrix
exponential by a truncated Taylor series. This problem arises in AUTOFILTER during
discretization of a continuous process. The approximation is easy to write down as
a rewrite rule:

is_square_matriz(A) and rows(A) = n = exp(A) = Liwn + A+ %A2 (7

Maintenance of these approximations is also made easier through the use of rewrites
—the above approximation can be replaced quickly with a third-order approximation
or augmented with additional rewrites expressing alternative approximations such
as approximation with an inverse Laplacian or numerical integration.

2.2.3 Support Modules. Schemas can be thought of as setting up the high-level
definition of the generated code. Rewrites can then be seen as refining this defi-
nition down a level. The lowest level of definition, however, is typically given by
various support modules. This is necessary in practice because, although it would
be possible to instantiate the templates using only rewrite rules, it would be in-
convenient and inefficient to do this for the many bookkeeping tasks (e.g., finding
the name of the variable representing the state vector) that need to be carried out
during code generation. The support modules can, in general, be written in any

3We rely on the rule designer to enforce this constraint.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

10 .
%%% Assumptions

. white process noise
. white measurement noise
. process and measurement noise independent

%%% Applicability Conditions

. Gaussian process noise
. Gaussian measurement noise
. Nonlinear process or measurement model

%h% Body

linearize process and/or measurement models
. discretize process model
. declare local variables
initialize local variables
. update measurements
. update loop dependent quantities
calculate Kalman gain ...
. update estimates
. update output vector
propagate

%%% Template

Template = "
series(
$Local,
$Initial,
for(0,$NumberIterations,
series(
$UpdateMeasurements,
$UpdateStateTransition,
$UpdateMeasurementMatrix,
$CalculateGain,
$UpdateEstimate,
$UpdateCovariance,
$StoreOutput,
$PropagateEstimate,
$PropagateCovariance
)
)
)II

return Template;

Fig. 4. Extended Kalman Filter Schema.

programming language. In AUTOFILTER, they are written in the logic programming

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

11
language Prolog [Clocksin and Mellish 1984].

The example in Section 3 will illustrate how the three levels are applied to produce
a faithful implementation of a model.

2.3 Generated Artifacts

2.3.1 Translation to programming languages. During the synthesis phase, a set
of program schemas are instantiated and combined to form the structural skeleton
of the filter implementation. Each of these instantiated schemas returns a code
fragment in AUTOFILTER’s intermediate language. This intermediate language is
a simple procedural language with additional operators for compact handling of
sums, vectors and matrices. This language is abstract and general enough to be
used within the synthesis schemas, yet it is close to a standard procedural pro-
gramming language to allow for a straight-forward generation of the final code.
The AUTOFILTER code translators have been designed in a modular way such that
the code generator can be easily adapted toward a specific target language or envi-
ronment. We have developed intermediate language to code translators for several
target systems and languages: C for Matlab (MEX interface), stand-alone C for em-
bedded environments with various run-time libraries, C++ for the Octave [Octave
2003] system, and Modula II. We can also generate (interpreted) Matlab code.

Depending on the selected target system, the translator converts the high-level
operators (like a matrix multiplication) into operations supported by the target
system, which, for example can be a C++ method, a for-loop, or a call to a library.

2.3.2 Correctness. Any code generator should be concerned with the correct-
ness of the code generated. This is particularly true for state estimation code which
is a safety critical component of flight software. Although outside the scope of this
paper, AUTOFILTER has been augmented with a number of techniques for verify-
ing the correctness of the generated code. These techniques fall into two broad
categories.

Firstly, we have developed methods for guaranteeing the correctness of the algo-
rithm used in the generated code [Rosu and Whittle 2002a; 2002b]. This is impor-
tant because AUTOFILTER may generate non-standard variants of the Kalman filter,
and it may not be obvious that these variants are indeed optimal estimators. By
providing machine-checked proofs of the optimality of the algorithm, AUTOFILTER
provides assurance that this is the case.

Secondly, we are using property verification. In this approach, a set of safety
properties is automatically checked for each statement of the code. We have devel-
oped a subsystem for AUTOFILTER which can automatically check programming-
language specific safety properties, like array-bounds safety, operator-definedness,
or variable-initialization-before-use [Whalen et al. 2002].

3. APPLICATION TO DEEP SPACE ATTITUDE ESTIMATION

AUTOFILTER is currently at the research prototype stage — it has been used on a
number of real-world applications that have shown that its use is feasible in practice.
We describe one of those applications here. The application was an “after-the-fact”
case study in the sense that code for the application had already been produced by

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

12

the original code developers.

Deep Space I (DS1) is a deep space probe managed from the Jet Propulsion Lab-
oratory (JPL) as a vehicle for testing a range of experimental NASA technologies
under flight conditions. It was launched in October 1998 and retired in December
2001. Although the Deep Space I mission is now over, the spacecraft continues to
operate in deep space.

In the summer of 2002, a case study was undertaken in which AUTOFILTER was
used to recreate the Kalman filter portion of the DS1 attitude estimator implemen-
tation. AUTOFILTER was used to specify the mathematical models for the attitude
estimator and around 400 lines of C code were automatically generated and then
integrated and tested in the Autonomy Lab, a JPL testbed for deep space missions.

In this section, we present the mathematical models used to specify the DS1
attitude estimator. These models are the same as those used in the original DS1
estimator. This case study is limited to the parts of the code for which AUTOFILTER
is suited, namely the core Kalman filter loop. Real-time issues, coordinate system
transformations, etc. are assumed to be taken care of outside the filter and are thus
not considered.

DS1 estimates attitude using a combination of an IMU (Inertial Measurement
Unit) and a stellar reference unit* (SRU). The estimator can be in one of three
modes — IMU only, SRU only or IMU and SRU. We will only consider the third
mode in this paper. In this mode, the gyro outputs from the IMU are augmented
with readings from the SRU to provide a more accurate estimate of the attitude
of the spacecraft. The SRU outputs a quaternion representation of the spacecraft
attitude and this quaternion is used to augment the IMU readings. The design of
the DS1 filter closely followed that given in Section XI of [Lefferts et al. 1982]. In
this example, quaternions were used to represent points and directions in space.
Although computationally slightly more complex, this representation has the ad-
vantage that a transformation between coordinate systems does not exhibit any
singularities (as can occur when Euler angles are used).

In the rest of this section, we show how the DS1 attitude estimator was modeled
in AUTOFILTER and discuss the code generation process. Note that rather than
estimating the full quaternion (representing the spacecraft attitude), the Kalman
filter estimates the error in a given base quaternion. This error is represented as an
incremental quaternion which must be composed with the base quaternion in order
to obtain the true quaternion. When the filter starts, the initial base quaternion
is given. The filter updates the base quaternion according to its error estimate on
each iteration and the new base quaternion is used in the following iteration. As
usual, the error quaternion is defined as

= (2) ©

where g = 7t sin(06/2) and g4 = cos(d6/2) and 66 is the incremental rotation about
an axis 7fi. Since 66 is small, g = 7 (60/2) and g4 ~ 1, so the fourth component of
the error quaternion need not be estimated.

The complete specification in AUTOFILTER is given in Figure 5. In total, there

4more commonly known as a star tracker

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

13

BEBoxm~NoomwNR

NN BRDBABDRABRRABRDAWOWWRWRWWWRNNNNNNNNEDNILNWFERE =
CWCNFHFOOOWNOOUBRLXNHOOTIONN R WNFHFOOOLNINAWNHFHOOOID AW

model ds1 as ’IMU + SRU attitude estimation for DS1’
data nat n_steps as ’Number of iterations in filter’
const double delta_t as ’delta time between iterations’
sk ks ok ks o ok sk o sk o o K o o K o o K 3K o o K 3K o KK o o K K o o K oK o Kok o ok KoK o o K ok o oK ok
* Process model

8K 33 o o K K 3K 3K o o K K 3K 3K o o oK K 3K oK o o 3 K oK KK 3K 3K o o o 3 K K oK oK ok o o o KoK KoK oK ok ok ok ok
double deltaTheta(l..3) as ’incremental quaternion elements’
double b(1..3) as ’gyro biases’

double eta(l..6) as ’process noise vector’

data double sigma(1..6)

eta(I) ~ gauss(0, delta_t * sigma(I))

double u(1..3) as ’gyro output’

equation_set process_model is

d/dt deltaTheta(1) := (u(3) - b(3)) * deltaTheta(2)
- (u(2) - b(2)) * deltaTheta(3)
- (b(1) - B(1)) - eta(l)

(u(1) -b(1)) * deltaTheta(3)

- (u(3) - B(3)) * deltaTheta(l)
- (b(2) - b(2)) - eta(2)

(u(2) - b(2)) * deltaTheta(1)
- (u(1) - b(1)) * deltaTheta(2)
- (6(3) - b(3)) - eta(3)

d/dt b(1) := eta(4) d/dt b(2) := eta(b) d/dt b(3) := eta(6) end
[%%k ok Kok ok ok ok ok ook ok ok ok ok ok Kok ok ok Kok Kok ok Kok Kok kR Kok Kok ok

d/dt deltaTheta(2)

d/dt deltaTheta(3)

* Measurement model

s ks ok ok s ok sk ok o sk ok ok ok o K ok ook ok o kK ok o K oK ok o Kok o Rk ok ok Kok o sk ok o sk ok Kok o ok /
data double z(1..3) as ’SRU adjusted measurements’
double v(1..3) as ’measurement noise vector’

data double rho(1..3)

v(I) " gauss(0,rho(I))

equation_set measurement_model is
z(1) := deltaTheta(l) + v(1)
z(2) deltaTheta(2) + v(2)
z(3) deltaTheta(3) + v(3) end

[3k sk ks ok ok sk ok ok sk ok sk ok o Kok ok ok o ok sk ok o K sk ok ok ok o sk ok o Kok o sk ok ok ok ok ok ok o ok ok

* Filter Specification

K5 K o K oK oK S KKK KK K o K o K o R o K oK K K K K oK K K R Ko Kok K oK K K K K ok K ok ok Kok Kok ok K Kk
double xinit(1..6) as ’initial state variable values’
data double xinit_noise(1..6) as ’initial state variance’
data double xinit_mean(1..6) as ’initial state means’
xinit(I) ~ gauss(xinit_mean(I), xinit_noise(I))

estimator dsl_filter

dsl_filter.update_interval = delta_t

dsl_filter.steps = n_steps

dsl_filter.process = process_model

dsl_filter.measurements = measurement_model
dsl_filter.initials = xinit(I)

/* mdiag(y) is the diagonal matrix with y along the diagonal */
dsi_filter.initial_covariance = mdiag(xinit_noise(I))

Fig. 5. Deep Space I Attitude Estimation Specification.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

14

are six state variables: §6;,1 < i < 3 and the three gyro biases b;,1 < i < 3. The
IMU provides a 3-vector output, an attitude rate, u. The process model is taken
from [Lefferts et al. 1982], equations (48), (51), and (135). Note that DS1 uses this
model in the covariance propagation but state propagation instead uses the IMU
data to approximate the model. From [Lefferts et al. 1982], the vector equations
for describing the process model are

w=u—-b-m (9)
d
Zb= 1
dtb 72 (10)
d N N
%50=—wx50—(b—b+n1) (11)

w is the true angular rate of the spacecraft which according to equation (9) is given
by the gyro output minus the gyro biases and unbiased white noise 1. Equation
(10) represents the gyro biases as a random walk where 72 is unbiased white noise.
Equation (11) describes how the incremental angles §0 change over time — see
[Lefferts et al. 1982] for details — where @ = u —b and b is the estimated gyro bias.
In the Kalman filter context, b is taken to be the best estimate of the gyro bias
from the previous iteration of the filter. Accordingly, in Figure 5, b in lines 16-24
denotes the estimate of b obtained in the previous time step of the filter run. Lines
14-24, give the process model in AUTOFILTER syntax.

The SRU measurements are modeled as a 3-vector, z, and measurement noise is
given by v. The actual DS1 SRU produces a full quaternion. In order to relate
this quaternion to the error components of the incremental quaternion, §6;, the
estimated full quaternion is needed. Since this is not available in the AUTOFILTER
DS1 specification, we assume the SRU full quaternion has been preprocessed to
produce delta angles representing the error quaternion before being sent to the
filter. In this case, as can be seen in Figure 5 (lines 33-36), the measurement
matrix H turns out to be [Isxs 03x3 |-

Note that in the original DS1 code, the “preprocessing” is taken care of within
the filter loop by maintaining a current quaternion estimate of the attitude. The
measurement, z, is then the correction in the attitude that should be applied to
the quaternion estimate of the attitude assuming the measured quaternion from the
SRU is the true value (see (118) in [Lefferts et al. 1982]): z = ggry ® g, Where
® is quaternion multiplication and * is quaternion inverse. Using AUTOFILTER, we
take a slightly different approach in which the preprocessing is done outside the
filter.

Given the specification in the previous section, AUTOFILTER generates code that
implements the corresponding extended Kalman filter. AUTOFILTER detects that
the problem is nonlinear and applies the appropriate algorithm schema. This in-
volves linearizing the process model and since the process model is also continuous,
a discretization step takes place. In essence, the process in [Lefferts et al. 1982] pps.
425-6 takes place automatically within AUTOFILTER. Briefly, the process model is
(automatically) linearized, resulting in

d
%Aw:FAm+w (12)

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

15

~ X
where ¢ = ((sq), w = (771) and F = (—w PREEE) a* is the standard
b 72 O3x3 O3x3

skew-symmetric matrix generated from the 3-vector a:

0 —as a2
a* = as 0 —a (13)
—as ai 0

As usual, the linearized process model for an extended Kalman filter considers state
vector incrementals, Az, rather than the full state vector.

To obtain the state transition matrix, ®, equation (12) must be discretized. This
is done in AUTOFILTER by approximating® the solution of (12) by the truncated
Taylor series expansion of eF'At The order of the expansion can be selected during
synthesis time. In our case study we used 2nd and 5th order Taylor series. Trun-
cated Taylor series are just one of several approximations that AUTOFILTER could
have used.

From the specification in Figure 5, AUTOFILTER fully automatically generates 400
lines of C code with calls to JPL’s own library for matrix operations. This library
contains simple subroutines for matrix addition, subtraction, transpose, multipli-
cation, and calculation of a 3x3 matrix inverse. AUTOFILTER can also generate its
own matrix operation code, in which case the code generated amounts to 780 lines.
The generated code was executed on a JPL testbed.

4. RELATED WORK AND DISCUSSION

A number of software packages exist for Kalman filtering — for example, the Matlab
function kalman (), Murphy’s Kalman filter toolbox [Murphy 2002], ReBEL [van der
Merwe and Wan 2003], KALMTOOL [Noorgaard 2002], as well as libraries written
in Fortran, C, Matlab etc. It is important to realize, however, that AUTOFILTER
is more than yet another toolbox. Toolkits provide concrete implementations of
particular algorithms. The user must spend a good deal of time understanding the
functions in the toolkit and how they interoperate. Low-level coding is still required
to implement a filter because the functions must be “glued” together. In addition,
many toolkits only deal with simple versions of state estimation problems — e.g.,
for linear systems only.

We consider the following as the main arguments why AUTOFILTER provides
additional functionalities over Kalman filter toolboxes and pre-defined functions:

—Toolbox functions hard-code a specific implementation of a specific algorithm.
AUTOFILTER, on the other hand, is designed to generate families of algorithms
because the algorithms are encoded as schemas. This allows for much greater
range and flexibility in the code generated.

—AUTOFILTER raises the level of discourse to that of the problem description rather
than how to glue together toolbox functions.

—AUTOFILTER is more easily customizable. Toolboxes are written in a specific
language and the source code for the functions may not be available. Since
AUTOFILTER generates code in a generic intermediate programming language, it

5a standard approximation — see [Grewal and Andrews 1993] for details

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

16

can be translated into many different programming languages, and the source
code is available for hand modification if necessary.

—Toolboxes are purely interpretive systems and do not generate programs.

We believe the strongest argument in favor of AUTOFILTER over toolboxes is that
AUTOFILTER provides so many variations of basic algorithms. This makes it very
easy to rapidly prototype systems without ever thinking of implementation details.
For example, the user may start off with a linear representation of a problem and
use AUTOFILTER to generate code. Minor modifications to the problem descrip-
tion may make the problem nonlinear. The user can just re-run AUTOFILTER and
have code returned that is significantly more complicated than the previous ver-
sion of the code despite the fact that the specification changed only slightly. Using
a toolkit-based approach, the original implementation would have to be modified
significantly by hand to replace the original linear filter function by a nonlinear
version and to introduce other functions such as a linearization routine. Another
example is if the specification admits a constant state transition matrix. In the
generated implementation, the matrix will be initialized once and never be recal-
culated. By changing the process model slightly, the state transition matrix may
become time-varying. In this case, AUTOFILTER would generate code that updates
the time-varying elements of the matrix on each iteration but leaves constant el-
ements untouched. In this way, AUTOFILTER has optimized the calculation of the
state transition matrix. Toolboxes would most likely just recalculate all of the
matrix on each iteration.

AUTOFILTER is a close sister of the AUTOBAYES system [Fischer et al. 2000] which
generates code for data analysis problems. In fact, the two systems share much of
the same infrastructure, including the rewrite engine and schema-based approach.
Where they differ is in the knowledge encoded in the schemas, the rewrite rules
and the support modules. Whereas AUTOFILTER has schemas for Kalman filters
and rewrite rules for linearization, AUTOBAYES has schemas for EM and clustering
algorithms.

AUTOFILTER is related to other systems that generate code for a particular class
of mathematical problems. In spirit it is similar to systems such as SciNapse [Akers
et al. 1997], a problem solving environment for partial differential equations, or
Ellman’s systems for generating numerical simulation programs from differential
equations [Ellman and Murata 1998] and physics-based animation programs from
a specification of analytical dynamics [Ellman et al. 2002]. It differs mainly in its
schema-based approach to code generation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented AUTOFILTER, a code generation system to auto-
matically synthesize Matlab/C/C++ code for state estimation from a compact and
concise specification. Using a schema based approach combined with a powerful
symbolic mathematics module, AUTOFILTER automatically can convert the process
and measurement model (given as a set of differential equations) into a Kalman
filter algorithm. We have demonstrated the capabilities of AUTOFILTER on a case
study within the realm of NASA: the state-estimation module for the Deep Space I
spacecraft. AUTOFILTER can produce code which performs the appropriate state

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

17

estimation task and which easily can be incorporated into a target software archi-
tecture.

One extension area for AUTOFILTER would be to incorporate recent improvements
to the Kalman filter algorithm, e.g., an unscented Kalman filter [Wan and van der
Merwe 2000]. Current specifications rely on the fact that process and measurement
noise is a white Gaussian noise. This assumption is a direct prerequisite in order to
instantiate a Kalman filter. We are planning to extend AUTOFILTER such that it
can handle cases with non-Gaussian noises. In such cases, modern filter algorithms,
e.g., particle filter [Doucet et al. 2001], will automatically be generated.

Another area of extension will address the handling of sensor data. In most real
applications, the state estimation module contains code to deal with sensor failures
or to handle multiple sensor modes (e.g., used for different stages of a descent
and landing process). A conservative extension of the AUTOFILTER specification
language will allow us to specify sensor failures and sensor modes.

State estimation is a safety critical component of most flight software. Any error
in specification, design, or implementation can lead to mission failures or even loss
of life. Therefore, we are currently extending AUTOFILTER to support certification
and review of the generated code. This means that it is not sufficient to just
synthesize the code. Rather, we are developing a set of extensions for the synthesis
system which can support a rigorous code review:

—the synthesized code is highly commented. In the current version, roughly one
third of the lines of code are automatically generated comments. The structure
and layout of the code is designed in such a way that the code reviewer can
understand the code and easily relate it to the specification. An HTML version
of the code can also be generated. It supports interactive navigation through the
code.

—AUTOFILTER can generate a detailed design document. This design document
combines all important pieces of information which show up during the synthesis
process. Besides hyper-links to the specification and all generated artifacts (code,
log files, etc), this document gives a detailed description of the interface and
explicitly calls out detailed assumptions and design decisions.

We are confident that with an extended domain coverage and with certification
support, the AUTOFILTER system will be a valuable tool for many state estimation
problems in aircraft or spacecraft design or in robotics.

Acknowledgements

The authors would like to thank staff at JPL, Harry Balian and Abdullah Aljabri,
who provided the case study in Section 3; Tom Pressburger who assisted with
checking the AUTOFILTER generated code and in testing for the DS1 case study;
and Ewen Denney, Pramod Gupta and Julian Richardson for comments on the

paper.

6. AUTOFILTER SPECIFICATION LANGUAGE

The input language of AUTOFILTER has been designed to be close to the notations
used by domain experts (i.e., vectors, matrices, and differential equations), yet it

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

18

allows to concisely spacify the state estimation problem. An AUTOFILTER specifi-
cation consists of 5 individual parts: declarations, specification of the process and
measurement model, details about software archiecture, and the synthesis goal. In
the following, we give an abbreviated formal definition of the language.

6.1 Declarations

In this part of the AUTOFILTER specification, all constants and variables are de-
clared. Each declared variable (DECL) is a scalar, vector, or matrix of the basic data
types nat, int, or double. For vectors and matrices, the dimensions are specificed
with a lower and upper bound. These bounds can be arbitrary expressions, e.g.,
double m(0..10, 0.. n-1). Variables and constants can be explicitely initial-
ized. Some AUTOFILTER variables are statistical variables which have a distri-
bution, e.g., the process noise. The Gaussian distribution is given by it mean
(usually 0) and the standard deviation as, for example z ~ gauss(0, r). IND are
all-quantified specification variables to denote generic indices. x(I) gauss(O0,
sigma(I) means that each element of the vector x has a zero-mean Gaussian dis-
tribution with a standard deviation corresponding to the vector element sigma(I).

DECL ::= [constl|data] TYPE VAR [:= EXPR] [as COMMENT]
| IVAR ~ gauss(EXPR, EXPR)
TYPE ::= nat | int | double
VAR ::= NAME | NAME(EXPR .. EXPR) | NAME(EXPR .. EXPR, EXPR .. EXPR)
IVAR ::= NAME | NAME(IND) | NAME(IND, IND)
COMMENT ::= STRING+

Expressions EXPR are scalar arithmetic expressions; vector and matrix accesses are
done in a FORTRAN-style: NAME (EXPR), and NAME (EXPR, EXPR), respectively.

6.2 Process- and Measurement Model

Both process and measurement model can be specified in various ways. The process
model defines the (noisy) plant, defined by its state vector, develops over time; the
measurement model how the measurements relate to the state vector. These models
are thus given as a set of equations over the state vectors. For continuous models,
differential equations (x = F(x)) are used, a discrete model is given as a set of
difference equations (xx+1 = F(xx)).

MODEL_DEF ::= equation_set NAME is DISC_EQU+ | CONT_EQU+ end
DISC_EQU ::= NAME (EXPR) _k+1 := EXPR
CONT_EQU ::= d/dt NAME(EXPR) := EXPR

6.3 Control, Interfaces, and Synthesis Goal

This section of an AUTOFILTER specification contains concise information on the
architecture of the desired filter, on the interface, and additional information (e.g.,
on the filter initialization). This specification is kept in a slightly object-orient
style for improved readability. The name of the Kalman filter is given after the
estimator keyword. Then various properties of the filter are specified. Below is a
list of the most important properties.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

CONTROL ::= estimator NAME SET_ATTR+ SYNTH_GOAL
SET_ATTR ::=
NAME .steps := EXPR % number of filter execution steps
| NAME .process_eqs := NAME % name of process equation set
| NAME .measurement_eqs := NAME /, name of measurement equation set
| NAME .initials := NAME(IND) J initial values state vector
| NAME .initial_covariance := EXPR ¥ initial covariance matrix
SYNTH_GOAL ::= output NAME

The synthesis goal output NAME finally triggers the synthesis of the entire Kalman
filter with name NAME (as defined in the AUTOFILTER specification after the keyword
estimator). In its basic form, such a specification will produce a single function
with the name of the estimator. Its inputs are all variables declared as data, its
output is a vector of estimated state vectors. The full AUTOFILTER specification
language also contains methods to specify the interface to the environment (param-
eter handling, separation of the update steps into different functions) which are not
discussed here

REFERENCES

AKERS, R., KANT, E., RANDALL, C., STEINBERG, S., AND YOUNG, R. 1997. SciNapse: A problem-
solving environment for partial differential equations. IEEE Comp. Sci. and Eng. 4, 3, 32—42.

BrowN, R. G. AND HwaNG, P. 1997. Introduction to Random Signals and Applied Kalman
Filtering. John Wiley & Sons.

CLOCKSIN, W. F. AND MELLISH, C. S. 1984. Programming in Prolog. Springer Verlag.

DoUucCET, A., DE FREITAS, N., AND GORDON, N. 2001. Sequential Monte Carlo methods in practice.
Springer Verlag.

ErLmaN, T., DEAK, R., AND FOTINATOS, J. 2002. Knowledge-based synthesis of numerical sim-
ulation programs for rigid-body in physics based animation. In The 17th IEEE International
Conference on Automated Software Engineering. IEEE Computer Society.

ErLMmAN, T. AND MURATA, T. 1998. Deductive synthesis of numerical simulation programs from
algebraic and ordinary differential equations. In The 13th IEEE International Conference on
Automated Software Engineering. IEEE Computer Society.

FISCHER, B., SCHUMANN, J., AND PRESSBURGER, T. 2000. Generating data analysis programs from
statistical models. In Workshop on Semantics, Applications, and Implementation of Program
Generation, W. Taha, Ed. Springer, 212-229.

GREWAL, M. AND ANDREWS, A. 1993. Kalman filtering: Theory and Practice. Prentice Hall.

LEFFERTS, E., MARKLEY, F., AND SHUSTER, M. 1982. Kalman filtering for spacecraft attitude
estimation. Journal of Guidance and Control 5, 5, 417-429.

MurpHY, K. 2002. Kalman filter toolbox http://www.ai.mit.edu/ murphyk/software/kalman/
kalman.html.

NOORGAARD, M. 2002. The KALMTOOL toolbox: http://www.iau.dtu.dk/research/control/
kalmtool.html.

Octave 2003. GNU Octave http://www.octave.org.

Rosu, G. AND WHITTLE, J. 2002a. Towards certifying domain specific properties of synthesized
code. In Verification and Computational Logic (VCLO02). Pittsburgh, PA.

Rosu, G. AND WHITTLE, J. 2002b. Towards certifying domain specific properties of synthesized

code — extended abstract. In Proceedings of Conference on Automated Software Engineering
(ASE02). Edinburgh, UK.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

20 .

ROUMELIOTIS, S., SUKHATME, G., AND BEKEY, G. 1998. Fault detection and isolation in a mobile
robot using multiple-model estimation. In IEEE International Conference on Robotics and
Automation. IEEE Computer Society, 2223-2228.

VAN DER MERWE, R. AND WAN, E. 2003. ReBEL: Recursive bayesian estimation library
http://choosh.ece.ogi.edu/rebel/index.html.

WAN, E. AND VAN DER MERWE, R. 2000. The Unscented Kalman filter for nonlinear estimation. In
Proceedings of 2000 Symposium on Adaptive Systems for Signal Processing, Communication
and Control (AS-SPCC).

WHALEN, M., SCHUMANN, J., AND FISCHER, B. 2002. Synthesizing certified code. In Formal
Methods Europe. Springer, 431-450.

ACM Transactions on Mathematical Software, Vol. 1, No. 1, 01 2003.

